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We use shallow-water theory to study the self-similar gravity currents that describe the 
intrusion of a heavy fluid below a lighter ambient fluid. We consider in detail the case 
of currents with planar symmetry produced by a source with variable inflow, such that 
the volume of the intruding fluid varies in time according to a power law of the type 
tZ. The resistance of the ambient fluid is taken into account by a boundary condition 
of the von Kiirrnan type, that depends on a parameter p that is a function of the density 
ratio of the fluids. The flow is characterized by p, a, and the Froude number % near 
the source. We find four kinds of self-similar solutions : subcritical continuous 
solutions (Type I), continuous solutions with a supercritical-subcritical transition 
(Type II), discontinuous solutions (Type 111) that have a hydraulic jump, and 
discontinuous solutions having hydraulic jumps and a subcritical-supercritical 
transition (Type IV). The current is always subcritical near the front, but near the 
bource it is subcritical (Fo < 1) for Type I currents, and supercritical (8 > 1) for Types 
11, 111, and IV. Type I solutions have already been found by other authors, but Type 
11, 111, and IV currents are novel. We find the intervals of parameters for which these 
solutions exist, and discuss their properties. For constant-volume currents one obtains 
Type 1 solutions for any p that, when p > 2, have a ‘dry’ region near the origin. For 
steady inflow one finds Type I currents for 0 < p < co and Type I1 and 111 currents for 
any p, if Fo is sufficiently large. 

1. Introduction 
Gravity currents in fluids are frequent in nature and manmade situations, and are 

important for theoretical and practical reasons (Simpson 1982). Various studies of 
gravity currents (Simpson & Britter 1979; Huppert & Simpson 1980; Rottman & 
Simpson 1983, 1984) deal with the flows produced by the instantaneous release of a 
given volume of a heavy fluid within an ambient fluid of lower density, a problem that 
is relevant for the assessment of the risks associated with the accidental release of toxic 
or flammable gases due to the rupture of storage tanks or pipelines. Variable inflow 
currents are also of interest in this context, to describe the effect of leaks of punctures 
through which the fluid is released over a period of time. A series of experiments on 
plane currents with variable inflow was performed by Maxworthy (1983). 

If viscosity is negligible, the balance of gravity and inertial forces governs the flow, 
and the shallow-water equations may be used. This description is adequate if the length 
of the current greatly exceeds its depth, which may not be the case at the beginning of 
the phenomenon. In this situation the governing equations admit a family of self- 
similar solutions that represent the intermediate asymptotics of a variety of initial- and 
boundary-value problems. Self-similar inertial gravity currents have been studied 
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theoretically by Britter (1979), who considered the spreading of a constant volume of 
liquid, and experimentally by Huppert & Simpson (1980). 

Grundy & Rottman (1985, 1986, from now on designated GR) investigated plane 
and axisymmetric currents whose volume varies with time that intrude in an ambient 
fluid. To take into account the resistance of the latter they used a boundary condition 
of the von Karma, type at the current front. This condition depends on a parameter 
,8 that is a function of the density ratio of the fluids (von K a r m h  1940). Yet the results 
of GR are not entirely satisfactory: for plane symmetry no solutions were found for 
several p ranges (including ,8 A m, that corresponds to an ambient fluid of vanishing 
density) and for other p they find a puzzling multiplicity of solutions; for axial 
symmetry no self-similar solutions were found at all. For plane symmetry, GR 
suggested that the 'missing' solutions could be found by considering currents with a 
hydraulic jump, yet did not examine this possibility in any detail. The puzzles of the 
non-unique solutions for plane symmetry, and their non-existence for axial geometry 
remain. Considering the importance of gravity currents, more work is necessary, as GR 
state in their paper, to clarify these matters fully. 

Here we reinvestigate the self-similar inertial gravity currents produced by the 
intrusion of a heavy fluid beneath a lighter ambient fluid that rests on a horizontal rigid 
surface. The intruding fluid issues from a source at  the origin of coordinates, and its 
volume varies with time according to a power law of the type t". We consider in detail 
currents with plane geometry, and show that there are unique self-similar solutions for 
any 8; we discuss their properties and physical interpretation. Thus we solve the 
puzzles and ambiguities of the previous work and obtain a fully satisfactory 
understanding of the plane currents. We leave for future work the case of axial 
geometry. 

The paper is divided as follows : in 92 we briefly review the governing equations, the 
boundary conditions, the phase-plane formalism (Sedov 1959 ; Courant & Friedrichs 
1948), and the limits of validity of the theory (Huppert 1982). In $ 3  we consider the 
different types of self-similar solutions and their construction; for this purpose it is 
essential to characterize adequately the flow by specifying, besides and a, the Froude 
number 8 of the current near the source. In 54 we investigate the existence and 
uniqueness of the solutions and their properties, we show several solutions as examples 
of the different kinds of currents that can occur, and we discuss the intervals of /3, a 
and $ in which they appear. In $ 5  we consider special analytic solutions, including the 
important cases 01 = 0, l .  Section 6 presents the conclusions. 

Our main result is that there are four kinds of self-similar solutions: subcritical 
continuous solutions (Type I), continuous solutions with a supercritical-subcritical 
transition (Type II), discontinuous solutions (Type 111) with a hydraulic jump, and 
discontinuous solutions having two hydraulic jumps and a subcritical-supercritical 
transition (Type IV). The current is always subcritical near the front, but near the 
source it is subcritical (6 < 1) for Type I currents, and supercritical (6 > 1) for Types 
11, 111, and IV. Type 1 solutions were found by GR, but Type 11, 111, and IV currents 
are novel. In Type I1 currents the supercritical-subcritical transition occurs without 
discontinuity. Type I11 currents have a single hydraulic jump. In Type IV currents the 
transition occurs in three steps: first, there is a hydraulic jump connecting the source 
part of the current with an intermediate subcritical flow region: second, the 
intermediate flow has a continuous subcritical-supercritical transition, passing into an 
intermediate supcrcritical region; finally, there is a second hydraulic jump connecting 
the intermediate supercritical region with the front region. When a = 0 (constant- 
volume currents) one obtains Type I solutions for any p. When a = 1 (steady inflow) 
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one obtains Type I, I1 and I11 currents. In general for any /3 it is always possible to find 
a family of self-similar solutions that represent currents produced by sources with 
different combinations of a; and 8. When the current is subcritical everywhere (Type 
I), /3 and Fo must be compatible, so that 8 = F0@) < 1. Otherwise (Types 11,111, IV) 
for any /3 it is possible to choose 8 independently. 

2. Theory 
We consider self-similar gravity currents in which an incompressible fluid (density p) 

intrudes beneath a lighter ambient fluid (density pa) that rests on a horizontal surface. 
We neglect friction between the fluids and the bottom. Under certain conditions to be 
discussed later, the balance between the inertia of the fluid and the forces due to gravity 
( g  is acceleration due to gravity) and buoyancy govern the phenomenon, the effects of 
viscosity being negligible. We shall assume that the length of the current is much larger 
than its depth, so that the vertical accelerations can be neglected, and the pressure is 
hydrostatic (Lamb 1945). We shall also assume that the depth of the ambient fluid is 
much larger than the thickness of the current. Then the flow can be described by the 
velocity u and the depth 4 of the intruding fluid. If  the current has Cartesian or axial 
symmetry, u,A will depend on time ( t )  and on a single spatial coordinate x; for 
Cartesian symmetry x is the distance from a linear source, while for axial symmetry it 
is the distance from a point source. In this paper we shall be concerned with plane 
currents, but in this Section we shall present formulae that include the axially 
symmetric case, since it does not add complications, and will help future work. 

2.1. Governing equations and boundary conditions 

With the above assumptions, the momentum and continuity equations can be written 
as (Penney & Thornhill 1952) 

u, + uu, + $zAz = 0, dt + X-yxnuA), = 0. (1) 
Here the geometrical index n takes the value 0 for Cartesian and 1 for axial 

(2) 

geometry, the suffixes denote derivatives, and 

9 = g@ - P a ) / P .  

Equations (1) are similar to those of the shallow-water theory (see for example 
Landau & Lifschitz 1959) with g replaced by the ‘reduced’ gravity 8. 

If the current has a hydraulic jump 4 and u will be discontinuous. Hydraulic jumps 
in the interface between two superimposed fluids are called ‘internal’ jumps, and have 
been studied by Yih & Guha (1955). In our coordinate system the jump is moving with 
a velocity c, and the jump conditions (for the case in which the depth of the ambient 
fluid is much larger than that of the intruding one, see Yih 1965) are 

u’ - c = 2(u - C)/$(F), A‘ = ;&$4(F), (3) 

(4) 

in which the Froude number F is given by 

B = (u - c)/bn)t, 4(9) = (1 + 8FZ)i - 1, 
and we denote with primes the variables after the jump. Equations (3), (4) are identical 
to the conditions for an ordinary hydraulic jump, with g replaced by 8. 

We are considering currents produced by a source with variable inflow located at 
x = 0; the volume of the current (volume per unit width for n = 0, total volume for 
n = 1) is given by 

2(t) = q a P ,  a; 2 0, (5) 
4-2 
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within an arbitrary constant. The boundary condition at the source is 
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lim [(~Tcx)' uA] = ag, ta-l. 
x-n 

It is important to realize that condition (6) does not specify completely the 
characteristics of the source. To see this point, it is helpful to discuss briefly how a flow 
that satisfies (6) can be actually set up, without entering into practical details. For 
a = 1, it is clear that any source that generates a flow with u, A constant is adequate; this 
can be achieved, for example, by draining a reservoir in which the liquid is kept at a 
constant depth through a slit opening of width A (in the vertical direction) at the 
bottom of one of its sides. For a + 1 the same type of source might be used, but now 
the depth of the liquid in the reservoir, or the width of the slit, or both, must be varied 
with time so as to satisfy (6). 

Clearly in an experiment there is an infinite number of ways to set up a source that 
gives the flow (6) since an infinite number of choices of k(x = 0)  and u(x = 0) are 
possible. In other words, we need some additional condition to determine uniquely the 
properties of the source, otherwise we cannot expect to have unique solutions, except 
under special conditions?. Many additional conditions can be imagined, for example 
one might require that X(x = 0) (or u(x = 0)) has a given constant value. These 
possibilities are legitimate, but will spoil the self-similarity of the problem by 
introducing an additional constant dimensional parameter. The only way to preserve 
self-similarity is that the new parameter arising from the additional condition be 
dimensionless. Of course this requires a source with special properties, but this is a 
price we must pay to achieve self-similarity. The only additional dimensionless 
parameter that can be used to specify the source is the 'source Froude number' 6 
given by 

% = l i m F  = lim[u/(gA)i]. (7) 
5-0 x+n 

The condition 6 7 constant requires u(x = 0) = un P, A(x = 0) = A0 t"P with 
p = $(a- 1) = 8- 1 ; this may be complicated from an experimental point of view, but 
probably not much more than satisfying only the condition (6). The choice of (7) as a 
second source condition has an additional advantage : it distinguishes the source that 
produce a subcritical flow (9" < 1) from those that produce a supercritical current 
(F,, > l), which lead to very different physical situations, and as we shall see later yield 
solutions of a different character. GR did not include the source condition (7) which, 
as we show, resolves the non-uniqueness question associated with their solutions for 
To> 1. 

To complete the discussion of the source boundary conditions we mention that there 
is an equivalent way of expressing (6), that can be useful in some circumstances. In fact 
2 satisfies the integral condition 

in which xf(t) denotes the position of the front. The condition (8) is not independent 
of (6), but is a consequence of it and of the mass conservation equation (and of the 
jump conditions), so that it is satisfied automatically for any current satisfying (6). 

t In fact, as it will be shown later, this is precisely what happens when the front boundary 
condition forces the current to be entirely subcritical, in which case a unique solution is obtained 
regardless of the properties of the source, which has been choked (i.e. d(x = 0) and u(x = 0) become 
independent of the details of the source, with the exception of a). 
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The boundary condition at the front must describe the resistance of the ambient fluid 
to the advance of the intruding fluid. We use the condition 

P"sdn(Xf, t )  = uyx,, t )  = i;, (9) 

in which if is the front velocity, and p is a constant dimensionless parameter. Equation 
(9) expresses a quasi-stationary balance between the driving forces (pressure gradient 
and buoyancy) and the drag due to the acceleration of the ambient fluid around the 
front (that produces a drag proportional to u2;  a detailed discussion of this subject can 
be found in the review article of Simpson 1982). We can write this balance as 

in which 9 = g(p-pa)/pa, and &? is a dimensionless parameter of the order of unity 
(von KArmAn 1940). Since 9 += 9 it is convenient to rewrite (1 1) in terns of the latter; 
to this end we define pz = ,G?{J /~~ so that (1 1) reduces to (9). The parameter ,8 could be 
determined experimentally, and if the densities of the two fluids are similar it will be 
close to unity (see for example GR, notice that in this work there is a misprint in the 
definition of 9 ) ;  the case of a gravity current in vacuum (p, = 0) corresponds to 
p+ co, i.e. to A(xf, t)  + 0. 

2.2. Self-similar grauity currents 
The formal analogy between shallow-water theory and the dynamics of an ideal gas 
with adiabatic exponent y = 2 (see for example Landau & Lifschitz 1959) allows one 
to adapt to the present problem the phase-plane formalism of gas dynamics (Sedov 
1959; Courant & Friedrichs 1948), which is useful for a systematic derivation of the 
self-similarities, The analogy is not complete for discontinuous solutions, since the 
hydraulic jump conditions are different from the Rankine-Hugoniot conditions for gas 
shocks. 

The gravity currents with variable inflow given by (5) are self-similar. To see this 
more clearly, lets us write h = 94, q, = qq,. We obtain from (I)  

ut + UU, + h = 0, h, + X P ( X n U h ) ,  = 0 ; (12) 

u'- c = 2(u - ~)/$(9), h' = $I $(.F), (1 3) 

the jump conditions (3) are 

with 9 = (u-c)/h;. The source boundary conditions (6), (7) are 

and the condition at the front (9) is 

/I2h(.xf, t )  = u'(x,, t)  = X,;. (15) 
In (12) no constant dimensional parameter appears (the role of 9 is simply to give 

a depth scale). From the variables and characteristic parameters of the problem one 
can form five dimensionless combinations, that can be taken as (see for example Sedov 
1959; Zel'dovich & Raizer 1968): 

17 = u t / x ,  @ = h t 2 / X 2 ,  6 = x/(bts),  /I, .%, (16) 
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with? S = l /p  = (2+a)/(3 +n), b = qi/(3+n). (17) 
We must have Zi’ = IIU, &, a, @ = @@, 4, Q, so that 

which means that the flow is self-similar in the variable The self-similarity appears 
because there is in the problem only one constant dimensional parameter (b), so that 
only one independent dimensionless variable can be formed from x, t. 

0 one has 6 2 2/(3 + n). On the other hand the validity of the 
present theory (which we shall discuss below) requires u < 4+ 2n, so that 6 < 2. Then 
p is restricted to the interval + < ,u < i (3  +n). 

Notice that since a 

2.3. Conditions of validity 
We now recall briefly the conditions of validity of the present theory. First we consider 
the conditions for neglecting the effect of viscosity (v). The ratio between the inertial 
forces 4 and the viscous forces 4 can be written as e/F, z ( t / t t , ,  n)(4a-7p5n) / (3+n)  (for a 
detailed discussion see Huppert 1982); the characteristic time t,, for which they become 
comparable is given by 

,,,n+3 2n+2 & 
ttr,.=( ; ) . (19) 

Then the critical value a, = a(7 + 512) separates the time intervals for which inertia 
dominates from those in which the viscosity is dominant. The inertial regime 
corresponds to 

t % t,, (a  > a,); t < tt, (a < aJ (20) 
In addition the thickness of the current must be always much smaller than its length 

to be consistent with shallow-water theory. But from (18), h / x  = btS-2@(s); then h / x  
will be bounded if 6 < 2, which requires 

u < 4+2n. (21) 
The same condition guarantees the consistency of the boundary condition at the 

front: the assumption of a quasi-static balance between the pressure difference and the 
drag due to the ambient fluid will be violated if the front acceleration increases without 
bounds. From x,(t) = b&& one obtains x f ( t )  = 6(S- 1) b P & .  Then as before we must 
have S < 2. 

2.4. Phase-plane ,formalism 
To derive the self-similar solutions we adapt the phase-plane formalism of gas 
dynamics (Sedov 1959; Courant & Friedrichs 1948) to shallow-water theory. We define 

u = btS-lS(V(Q, h = b2t26p2S2<2Z([). (22) 
Substituting in (12) one obtains after some algebra: 

t The non-dimensionalization of 6 and the form of 6 have been chosen to satisfy the first source 
condition (14) (or, equivalently, the volume integral condition), as is standard in this type of problem. 
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d ( V , Z )  = ( 1  - V)Z-Z, 

A,( v, Z )  = V( v- p) ( 1 - V )  + Z[ (n + 1) v + 2( 1 - p)],  

(25) 

(26) 
A2(V7Z) =Z{( l -V)[2(V-~)+(n+l )  V ] +  V(V-p)+22). (27) 

with 

Notice that 5 is an autonomous variable in (23), (24). In terms of the phase variables 
(V ,  Z )  the jump conditions are 

V’ = 1 + 2( v- l>/$(?F), 2’ = 29(.9)/2, (28) 
with 9 = (V-  1) 2-i. From (28) one finds the relationship between the Froude 
numbers on each side of a jump: 

9’ = .F[2/6,(.F)]:. (29) 

(30) 

The source boundary conditions are 

lim (27c<)n ~ < 3 ~ ( g  z(<) = a, lim V(Q ~ ( g 1 - t  = %, 
5-0 w 

and the condition at the front is 

in which 5, denotes the self-similar coordinate of the front. The volume integral is 

The problem of finding the self-similar solutions is essentially reduced to solving the 
autonomous equation (23) for Z(V);  then a simple quadrature gives [ (V)  from (24). 
Equation (23) is a single ODE linking the phase variables V,Z (related to the 
horizontal velocity and the depth of the current); its solutions are represented in the 
phase plane (V ,  2)  by curves (or portions thereof) called ‘integral’ or ‘characteristic’ 
curves. Only the half-plane 2 > 0 is physically meaningful. A single integral curve 
passes through any regular point of the plane. The solution of a specific problem, 
characterized by its particular boundary (or initial) conditions, is represented by a piece 
(or pieces) of some integral curve (or curves). To find the appropriate curves it is 
necessary to know the behaviour of the solution in th neighbourhood of the singular 
points of (23). 

In constructing the solutions it is important to notice that (( V )  has an extreme at the 
regular points of the parabola Z = (1 - V)z  (the ‘critical parabola’. for brevity) 
where A( V,  2) = 0. If an integral curve crosses the 9$, v(Q and Z(0 are multivalued 
near the crossing, which cannot be allowed in a physical problem. Then the portion of 
a curve representing the solution of a real problem cannot cross the % (except in the 
special case when the point of crossing is singular). The ,% dividies the phase plane in 
two regions: (a) the points ( V , Z )  below the .qg, which represent supercritical flows 
(F > l), and (b)  those above the 9& which represent subcritical flows (9 < 1). 

As in gas dynamics, it is possible to obtain discontinuous solutions. This happens, 
for example, when the integral curve that represents the flow in a certain domain (i.e. 
in a certain &interval) crosses the at a regular point. Then thb integral curve must 
cease to represent the solution at some point J before the crossing. At this point the 
solution has a discontinuity, and its continuation beyond it must be represented by a 
portion of a different integral curve lying on the other side of the .%, starting at another 
point J ’ ;  the phase variables on both sides of the discontinuity (i.e. the points J and 
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J’) are related by the hydraulic jump conditions (28). A jump in a self-similar current 
occurs at a fixed value f = $(= f J , )  of the self-similar coordinate. Since a jump 
connects a supercritical flow with a subcritical one, the transition must go from points 
below the gg to points above it. Later we shall discuss how to find the conjugate points 
J and J‘ that define the jump. 

3. Self-similar plane gravity currents 
In what follows we shall consider in detail plane currents (n = 0,6  = 1 / p  = t(2 + a)). 

It is convenient to consider separately the cases 0 < a < 1 (,u > 1) and a > 1 
(0 < p < 1). (Actually only ,u > + should be considered, since (21) requires a < 4.) 
In addition there are two special cases of interest in which one obtains analytical 
solutions: a = 0 (jL = :), which corresponds to constant-volume currents, and 
a = 1 (jL = 1) which describes the currents produced by a source with constant 
outflow; they will be discussed separately in $5.  

For n = 0, the autonomous equation (23) has eight singular points, of which three 
are at infinity ( D ,  E. F).  The position and properties of the singularities depend in 
general on ,LL (i.e. on a) and are summarized in table 1 ; the asymptotic behaviour of the 
solutions near a singularity determines their physical meaning. It is worth mentioning 
that for any given singularity S,  the values V = V,, 2 = 2, represent an isolated exact 
self-similar solution of the shallow-water equations. Plots of the family of integral 
curves are shown in figure 1 for p = $ and in figure 2 for ,u = $, to illustrate the two 
different topologies of the phase plane for ,u < 1 and p > 1. The curves shown have 
been obtained by numerical integration of (23). The singular points of the autonomous 
equations at the finite are shown. All the curves that enter in the diagram from outside 
the (V, 2) range represented begin at the singular point F (V, = 00, Z ,  = GO). The 
singular point D is not relevant for the present problem, and the same is true for E, 
except for constant-volume currents (a = 0, see $5) .  

According to the source boundary conditions (30), the self-similar currents must be 
represented by curves that begin at the node F (that represents a source at x = 0, see 
table 1). They must end at a (regular) point P( V‘ = 1, Z, = l/bz) that represents the 
front; the position of the latter depends on the front boundary condition (3 1). 

3.1. Summary of and comment on GR’s results 

It is convenient at this point to comment on the results of GR concerning plane gravity 
currents. Their treatment? is similar to the present one, but has two important 
differences. First GR do not include the second source condition (7) and secondly, 
except for a few general remarks, they do not consider solutions with jumps. As we see 
below these omissions have important consequences for the existence and uniqueness 
of solutions; we comment on these later. First however we summarize and comment 
on the arguments and conclusions of GR. 

3.1.1. a > 1 (0 <,u < 1) 
The integral curve passing through P does not arrive at F for certain values of ,!I. It 

can be observed that there is a limiting integral curve 9 (see figure 1) which crosses the 
9% at F (i.e. for this curve 6 = 1). By numerical integration of (23) from F to V = 1 

t In GR the phase variables V, Z are transformed into two variables V,, W defined by V, = 1/V, 
W = Vz /Z .  With this change Fis transformed into the line V, = 0 of the (V,, W)-plane. This change is 
not essential, and we prefer to discuss the problem using the (V,  Z)-plane as i s  usually done in gas 
dynamics. 
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0 2 3 
V 

FIGURE 1. Integral curves for x = (i. = $), the arrows show the direction of increasing 6. 

Singularity 
0 

B 

c, 

c, 
c, 

D 
E 

F 

Type 
node 
node 
saddle 

node 

logarithmic node 
logarithmic node 
saddle 
node 
saddle 
saddle 
saddle 
node 

~ 

6 =  
m 
co 
0 
m 
m 

0 
m 

f 
f 
f 
0 

0 
0 

Behaviour 

u =  h =  

O o r m  CZI 

0 0 
0 0 
rn cc 
m cc 

0 0 
Xl 0 

.f 0 

f f 
f f 
0 f 
0 f 
f f 

TABLE 1. Singular points: position and properties of the singular points of the autonomous 
equation (23) for n = 0 (a < p < :). HereSrepresents a finite non-vanishing quantity 

with the boundary condition 4 = 1 one can find the point P, (Vpc = 1, Zcc = pc-', 
p, = /3,(j~)), and so the critical value p,. For p < p, there will be integral curves joining F 
with P .  In addition if p > 2 there will also be integral curves joining P with F, but such 
curves pass through the node C,. But if /3, < /3 < 2 the curves starting at P cannot reach 
F. On this basis GR conclude that if p, < < 2 there are no solutions of (23) that 
satisfy the boundary conditions. They also conclude that for /3 > 2 the solution is not 
unique, since any curve through P arrives at C,, and from there it can be continued to 
F i n  infinitely many ways. 



86 J .  Gratton and C. Vigo 

FIGURE 2. Integral curves for a = b, = $), the arrows show the direction of increasing 5. 

3.1.2. 0 < s1 < 1 (1 < p < g) 
Now C, is a saddle. It can be seen from figure 2 that only when /I < 2 will the curve 

through P arrive at F;  these curves correspond to subcritical currents. If p > 2 the 
curves through P do not arrive at F. The conclusion of GR is that if p > 2 the problem 
has no solution. 

3.1.3. Comments 
The above arguments hold if we restrict ourselves to continuous solutions and the 

single source condition (6). However, it is hard to believe that no solutions exist for 
large p-intervals, and for other intervals the solution is not unique. First, it is contrary 
to intuition that self-similarity ceases to exist when the numerical value of a 
dimensionless parameter (p) changes, but remains finite and non-vanishing. On 
physical grounds, we expect that it must be possible to choose (within certain limits) 
the properties of the source (not only a, but also %) regardless of the properties of the 
ambient fluid (i.e. p); notice that F is a node, which hints at this possibility. In 
particular, we fail to see why there should not be solutions with a supercritical flow 
near the source (which means that the source region of the current is not influenced by 
what happens at the front). Second, since the solution of any well-posed physical 
problem must be unique, the occurrence of many solutions (the infinite integral curves 
joining the nodes C, and Ffor 0 < p < 1) clearly implies that some condition has been 
overlooked. As we show below the admission of discontinuous solutions resolves the 
questions of existence while the inclusion of the second source condition (7) deals with 
the uniqueness question since it fixes the curve through F that arrives at C,. Finally we 
point out that the results of GR, that the only self-similar solutions for s1 = 1 are 
uniform flows (u = uo = (q,p2)i, h = h ,, - - (q,/P)f), raises a further question since they 
do not yield any meaningful solution in the limit p-. co. Surely something is missing, 
because in this limit one should find (at least!) the well-known self-similar current 
describing the ‘breaking’ of a dam (analogous to the familiar gas dynamic self-similar 
expansion wave, see Zel’dovich & Raizer 1968, also Gratton 1991), see for example 
Whitham (1974). 
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3.2. The different types of solutions and their construction 

Here and in the following Sections we shall show that for any /3 it is always possible 
to find solutions that are unique if the source is completely specified. In addition we 
shall use physical criteria to classify the solutions that appear for different ranges of /J, 
3. Ultimately a complete and satisfactory family of self-similar gravity currents is 
obtained, free from omissions and ambiguities. 

Near the source the solution must be represented by an integral curve that begins at 
F, which we shall denote VF (VF depends on 8 as we shall now show). The integral 
trajectory must end at  P (whose position depends on p), but may be discontinuous 
since the current may have hydraulic jumps. Let us first discuss how the source 
properties determine WF and the complete solution in the source region. Integration of 
(23), (24) near F yields 

2 = (V/%)2, 6 = K / V ,  K = const. (33)  

The constant K is a scale factor for 5, and appears because the governing equations 
(23), (24) depend logarithmically on 6. Using (33) in (30) one obtains 

K 3  = p 2 ( 3  - 2p)  Fi. (34) 

From (34) we see that a and 6 determine K so that the source boundary conditions 
determine uniquely the curve WF and the complete solution near the source. 

On the other hand, the front boundary condition (31) also determines uniquely an 
integral curve (the single curve passing through the regular point P) that we shall 
denote qP (Vp = gP(/3)), which is always subcritical, and which may, or may not, 
coincide with %''. But notice that the complete solution near the front is not uniquely 
determined by /3 since cf is not yet known. To determine .$ and so the complete solution 
near the front it is necessary first to find the adequate matching between the two parts 
of the solution, represented by gF and gp. 

Depending on the relation be tween %jP and WP, different situations can occur, which 
lead to different ways of constructing the solution and so to solutions of a different 
character. 

3.2.1. Continuous regular solutions (Type I )  
The simplest case occurs when Vp coincides with qp, and all its points are regular 

(except F) .  Then the solution is represented by a continuous integral curve F'P. For 
each /3 there can be only one (or none) Type I solution, corresponding to a certain 6. 
Conversely, for each Yo there can be only one (or none) Type I solution, corresponding 
to a single /3. It is characteristic of Type I solutions that the properties of the source 
(,%) and of the front (/3) cannot be chosen independently, but must be compatible, so 
that Fo = 5(/3). It is important to notice that since gP is always subcritical, a necessary 
(but not sufficient!) condition for the existence of Type I solutions is that VF be 
subcritical (above the q), i.e. 8 < 1 (an exception to this occurs for cx = 1, see $5).  

3.2.2. Continuous solutions wiih a critical transition (Type I I )  
A second possibility is that V' and Wp join at a singular point. This occurs when both 

arrive at C,. If this happens we shall have a continuous solution as in $3.2.1, but now 
for each /J there can be an infinite number of solutions of this type since there will be 
a range of values of for which VF arrives at C, (before crossing the 9$). Each gives 
a continuous solution consisting of a piece FC, (that depends on $$) that is joined at 
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C, with a piece C ,  P (that depends on /?). For a given p, there can be an infinite number 
of solutions of this type, which represent currents whose fronts have equal properties, 
but are produced by sources having different 3. Likewise, for a given % such that VF 
arrives at C,, there can be an infinite number of Type I1 solutions, which represent 
currents produced by a given source, but whose fronts have different properties. Now, 
in contrast to above, & is not uniquely determined by p. The solutions that GR brand 
as ‘not unique’ belong to this class (actually GR found a family of solutions, 
corresponding to sources with different characteristics that produce currents with 
fronts having equal properties, or vice versa). 

3.2.3. Discontinuous solutions (Type 111) 

It may be that VF and Vp do not have points in common. When this happens, it is 
still possible to construct solutions, but they must be discontinuous. One possibility is 
to have a hydraulic jump connecting gF with Vp (a different, less obvious possibility will 
be discussed below). Clearly, a necessary condition for the existence of solutions with 
jumps is that VF be supercritical. 

To discuss the construction of discontinuous solutions it is convenient to introduce 
a shorthand notation for the jump conjugates in the phase plane: let X( V ,  2) be a 
point, then X’ = X’( V’, 2’) = Y ( X )  is the point that is obtained applying the jump 
relations (28) to X .  In the same way one can denote the conjugates of curves and 
regions of the phase plane, for example one has Yk = .F(%) = $: 

The prescription for the construction of a discontinuous solution IS the following: let 
WF represent the solution near the source, and let gP represent the solution near the 
front. The intersection J of Vp and F(%$), if it exists, represents the variables before 
the jump. Then the intersection J’ of gI, and F(VF), represents the variables after the 
jump (clearly, J‘ = F(J)). The solution is then represented by the discontinuous pieces 
FJ and J’P. Notice that the position of J on the curve VF depends on p; reciprocally, 
the position of J‘ on gp depends on %. 

For each /? there can be an infinite number of Type I11 currents, because there will 
be a range of 8 for which VF can be connected by a jump with %‘,, thus allowing a 
solution to be constructed using the above prescription: 8 is not uniquely determined 
by /?. As in the previous case we have families of currents produced by sources with 
different characteristics, but whose fronts have the same properties (or vice versa). 

3.2.4. Discontinuous solutions with a continuous critical transition (Type I V )  
When VF and Vp do not have points in common and simultaneously VF and F(V‘) 

(or equivalently, V‘ and Y ( W F ) )  have no intersection, it may be still possible to 
construct a solution. In fact, we shall show below that for 01 < 1 there is a special 
integral curve .X that intersects both F(%$) and F(Vp) at points J i . 4 ,  respectively. 
Then we can construct a solution represented by three discontinuous parts : the piece 
FA of VF, the piece J ;  J ,  of X ,  and the piece Jh P of Vp. Since X is fixed, the position 
of J1 on VF will depend on e, and the position of JL on Vp will depend on /3. Since 
S ( W I e , , )  and 9-(VF) lie on different sides of the 6, the curve ,X must cross the 9% at a 
singular point to have solutions of this type. Then Type IV currents consist of a 
supercritical source part and a subcritical front part, linked by an intermediate region 
(represented by the piece J ;  J ,  of n’) in which the flow has a critical transition, passing 
from subcritical (near J;) to supercritical (near J,). Hydraulic jumps connect the 
intermediate part of the current with its source and front parts. 

As happens for Types 11,111, for a given /? there can be an infinite number of Type 
IV solutions, because there will be a range of 8 for which qF can be connected by a 
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jump with X .  These solutions will represent currents whose fronts have equal 
properties, but are produced by sources having different .%. Then % is not uniquely 
determined by p, and we shall have families of solutions that describe currents 
produced by sources with different characteristics, but whose fronts have the same 
properties (or vice versa). 

Notice that the currents of all types (I-IV) are always subcritical in the front region. 
But in the source region they can be either subcritical or supercritical, depending on 9". 

4. Existence of the solutions and their properties 

appear and discuss their properties. 
We shall now find the ranges of a, p, 6 in which the different types of currents 

4.1. Solutions for a > 1 (0 < ,u < 1) 
The topology of the relevant part of the phase plane is shown in figure 1, and some of 
its important features are displayed in figure 3(a) to help the reader in following the 
discussion. The intervals of p, Yo in which the solutions are found can be visualized in 
figure 3(b). Notice that C, is a node, and that there are two integral curves having 
te = 1, namely the limiting curve 2 lying above the 96 (which was already introduced 
in $3.1), and the curve A!' that lies below the .% and goes from F to C,. 

4.1.1. Regular continuous solutions (Type I )  
If 0 < p 6 pc the curve %jp does not cross the 9j& and arrives at F without passing 

through any singularity, coinciding with the gF curve corresponding to a certain 
6 =, 9JJ) < 1 ( 4 ( p )  is determined by numerical integration of (23)). These are the 
continuous solutions discussed in GR, for which p determines uniquely 9". The 
physical interpretation is obvious : since the current is everywhere subcritical, the 
resistance of the ambient fluid (expressed by p) influences the entire flow up to the 
source; in consequence % cannot take any arbitrary value, but only that which is 
compatible with p. 

4.1.2. Continuous solutions with a critical transition (Tvpe II) 
If p 3 2 the curve ' I p  crosses the 9$ passing through C,. Then the solution can be 

continued to F without the need of a hydraulic jump (it is allowed to cross the g# 
through a singularity) in an infinite number of ways, since all the 'e, with 1 < 6 < 2 
arrive at C,. These curves lie in the wedge-shaped region GjX of the phase plane limited 
by A, C,, and the analytical integral curve $? (whose equation is Z = V2/4). The 
current is supercritical near the source (piece FC,) and subcritical in the piece C, P. 
Here p does not determine uniquely Fo. The physical interpretation is the following: 
since the current is supercritical near the source, the ambient fluid resistance (given by 
p) cannot influence the entire flow, but only its subcritical part (C,  P). The source 
region of the current (FC,) is determined only by re. 
4.1.3. Discontinuaus solutions (Type 111) 

This type of solution exists if the flow near the source is supercritical (,% > 1). We 
distinguish two subcases : 

(a)  If 1 < 4 < 2 the curve qp lies in &!, and (22; = F(VF) lies in the wedge-shaped 
region W' = F ( W )  above the %, limited by %" = F(V), C, and A' = F(JY). Clearly, 
any curve %$ that enters 9' can be connected by a jump to some V p ,  using the 
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(b)  

FIGURE 3. Case a > 1 : (a) relevant featurcs of the phase plane and construction of solutions, the labels 
a, b, c denote Type 111 solutions; (h) intervals of parameters in which the different types of currents 
appear. The curves have been obtained by numerical integration for a = 2 (p = 4). 

prescription given in $ 3 . 2  (see the solution labelled a in figure 3a). But Vp will enter 9' 
only if P I F m  < < 2, where Plzm is determined by the condition that %?&!Ilem) crosses V' 
at F.? If p < /Illrn the curve WP will never enter 9'; if p > 2 it crosses the through 
C, and does not enter g' (this case leads to a Type I1 current). It is easy to verify that 
piam < p,. Furthermore, if Plsm < < P, there will be Type I11 solutions only for 6 in 
the interval 9!&&3) < % < 2, where qnf(/l) is the 8 value of the particular VF that 
crosses at F the curve ,Y(qP) corresponding to the p we are considering. Notice 
that %&I) > 1, since %&3) and F ( P )  are related by (29). On the other hand, if 
/?, < p < 2, it is possible to find Type IIT solutions for 8 in the interval 1 < 6 < 2. 

(b) When 3 > 2, W' lies in the region Y of the phase plane limited from above by 
the <q6 and V, and from below by 2 = 0. All the 4k;, cross the 9' before arriving at C,. 
The region 9' = Y(Y)  lies above %g and is limited by V = 1 ,  the e% and V'. It is easy 
to see that for any P, there are parts of Vp within Y'. Therefore it is possible to 
construct discontinuous solutions for any j3 (see the solutions labelled b, c in figure 3 a). 
It can be shown that if p > Pl lm such solutions exist for any 3 > 2. On the other hand, 
if p < PLfm there are Type I11 solutions only for Fo > 9&@). 

In all the discontinuous solutions the source region FJ of the current is supercritical 
so that the effects of the ambient fluid resistance cannot propagate upstream to the 
source (/3 determines the current profile only in its subcritical part, while the rest is 
determined only by 5). 

The intervals of p and 6 corresponding to the different types of currents are shown 
in figure 3 (b). Notice that there are solutions corresponding to /3 = cc (i.e. currents in 
a vacuum); but then the front part of the current is represented by the special integral 
curve joining C, with C,. It is interesting to observe that. if 0 < /? < /3, it is possible to 
have for the same P (but different 5 values) a continuous solution (with & < 1) and 
infinite discontinuous solutions (with 3 > 9$'J)). These currents are all identical in 
the front region, but different in the source region. In addition the discontinuous 

+ It can be verified that (er("l,,) corresponds to % = 2;[\/33 - 11-8 
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FIGURE 4. Currents for = (p = :), 1 4 8 < 2 and ,8 variable: (a)  dimensionless velocity profiles 
V([), (b) dimensionless depth profiles H(6).  The solutions correspond to Fo = 1.66, p, = 0.26, 
p, = 0.88, p, = 1.10, pd = 1.75, p, = 2, pf = 2.24, /Ig = 3.16, ph = m. The solution marked a 1 
hydraulic jump at x = 0, and is, in effect, a Type T current. 
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FIGURE 5. Currents for cc = j ('JL = f), 4 > 2 and /J' variable: (a) dimensionless velocity profiles U([),  
(b) dimensionless depth profiles H(Q. The solutions correspond to .% = 2.76, /I,& = 0.26, p, = 0.35, 
p, = 0.51, /I, = 0.88, /I, = 1.10, pf = 1.75, p, = co. The solution marked a has a hydraulic jump at 
x = 0. 

solutions differ among themselves regarding the position of the jump, which is very 
near the source for & close to $&?), and moves towards the front as % increases. 
When % = q n f ( P )  the jump occurs precisely at the source, and this 'discontinuous' 
solution coincides with the continuous (Type I) solution corresponding to the p in 
question, whose 6 = 9(/3) is conjugate to eqn&/l') by (29). In other words, the 
continuous solutions can be considered as the limit of discontinuous solutions as the 
jump approaches and chokes the source. 

Some solutions obtained by numerical integration of (23), (24) for a = are shown 
in figures 4 and 5,  which show the dimensionless depth profiles H(Q = S2['Z(Q = 

h/b2t2"' and the dimensionless velocity profile U ( 8  = @V([) = u/btspl. Figure 4(a, b) 
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represents currents produced by a moderately supercritical source (ce = 1.66) and 
different /I, which corresponds to a cut of the diagram of figure 3(b) along an 
horizontal line. Then as p increases one finds first a choked current (Type I), then Type 
111 currents for p < 2, and finally Type I1 flows. Figure 5(a, b) represents currents 
produced by a strongly supercritical source (3 = 2.76) and different /3. As p increases 
(see figure 6) one finds first a choked current (Typc I), then Type TI1 currents, but no 
Type IT flows appear. In both cases it can be observed that the length of the current 
increases and its thickness at the front decreases as /3 is increased (i.e. the ambient fluid 
resistance is diminished), according to intuition. Except for the jumps, the thickness of 
the current decreases as [ increases : this is because the parts of the current farther from 
the source are made up from the fluid that issued earlier, when the source flow was 
smaller (a > 1). It can also be observed that the velocity is nearly constant in the 
supercritical region, but (except for p+ co) decreases significantly with increasing 5 in 
the subcritical part near the front ; also the length of this part is almost independent of 

4.2. Solutions for  a < 1 (1 < ,~i, < $) 
Now C, is a saddle, and there are only two integral curves that cross the 4 passing 
through C,. One is V (see $4.1.2), which represents a special continuous solution that 
exists only for p = 2 (see $5) .  The other, which we call Xb) ,  goes from C, to Ppassing 
above the 4 and corresponds to 3 = Fx (the unique curve X(p) can be determined 
by numerical integration of (23)  starting from C,, where its slope is given by 
(5-,~~)/2(2-p); in this way the value of Fy = FX@) < 1 is also obtained). Its 
conjugate X' = F ( X )  allows another limiting value of 3 to be defined, which we 
shall denote Fy, (Fx. = FX&x), 1 < SY. < 2). (From (29) one can obtain 
Ffl = Fx[2/$(95-)];.) The relevant part of the phase plane is displayed in figure 2, and 
some of its important features are shown in figure 6(a)  to help the reader. In this figure 
three Vp curves (Vp, Vb, V;) have been drawn, corresponding to different @-values. The 
intervals of p , Y O  in which the solutions are found are shown in figure 6(b). 

P. 

4.2.1. Continuous regular solutions (T jye  I )  
When /3< 2 the curve Vp arrives at F without crossing the .%. The same 

considerations as presented in $4.1.1 apply in this case. These solutions were found by 
GR, and for them & = 8(/3) < Fx < 1. 

4.2.2. Discontinuous solutions (Type I I I )  
Depending on 8 there are two cases: 
(a)  If Ff. < 3 < 2 the curve gF lies in the region 9, limited by the 9$, C, and %?. 

But in contrast to the case a > 1, qF does not arrive at C,, but crosses the % above this 
point. Its conjugate (VF. = Y(gP)  lies in 9'. Only those Vp that enter in the subregion 
gx of 9' limited by X and %" can connect by a hydraulic jump with those Vp that have 
parts in the subregion gX of 9 limited from above by X' and from below by %'? (see 
the solution labelled a in figure 6a).  Now, Vp enters into ZX only ifpltm < p < 2; in 
this case it can connect with the "e, corresponding Yo > 9&(/l) 2 .FX ; if /3 < PZtm the 
curve Wp never enters gF; if @ > 2 it crosses the % below C, and does not enter gX., 
either . 

(b) When 3 > 2 the curves V' lie in Yx (limited by V ,  C,, X ,  C, and Z = 0) and join 
F with C,. For any p, parts of Vp are within YX so that it is always possible to find 
discontinuous solutions following the usual prescription provided 8 > [eBf(,8), 21 (see 
the solution labelled b in figure 6a). 
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FIGURE 6.  Case CL < 1 : (a )  relevant features of the phase plane and construction of solutions, the labels 
a, b denotes Type 111 solutions, c is a Type IV solution; (h) intervals of parameters in which the 
different types of currents appear. The curves have been obtained by numerical integration for 
CI = + (p = i). 

Concerning the properties of Type I11 solutions, the discussion in 54.1.3 also applies. 
When .% = $@) the jump occurs precisely at the source, and this ‘discontinuous’ 
solution coincides with the continuous (Type I) solution corresponding to the /3 in 
question, whose % = 9-v) = Enf[2/4(93]i  is conjugate to er,f(pj by (29). 

4.2.3. Discontinuous soluiions with a continuous critical transition (Type I V )  
When FA < % < 2, F@’) intersects the special integral curve .Y, whose conjugate 

X’  (after crossing the YW at C,) in turn intersects all the curves V‘ with ,6 > 2. Then 
Type IV solutions can be constructed following the prescription given in 9 3.2 (see the 
solution labelled c in figure 6a). 

A special limiting case of Type IV solutions is obtained when the first jump occurs 
precisely at the source; the solutions are represented by the piece FA of X and J( ,  P of 
Wp for any p > 2 and all correspond to Yo = 9%. 

The intervals o f p  and % corresponding to the different types of solutions are shown 
in figure 6(b). Like in the a > 1 case, we find that if 0 < p < 2 it is possible to have for 
the same p (but different L% values) a continuous solution (with % < 1) and infinite 
discontinuous solutions (with 6 > 2 for 0 < /? < pzt,n, and with % > 9% for 
PZim < < 2), all identical near the front, but different in the source rcgion; the 
discontinuous solutions differ regarding the position of the jump, which moves towards 
the front as 3 increases. In contrast to the a > 1 case, when CL < 1 there are no 
solutions for p = co (currents in a vacuum). Also notice that while for any (finite) p it 
is always possible to find some solutions, the analogous situation is not true for %, 
since no solutions exist in the interval FT < 6 < Fx . 

It can be noticed that for CL < 1 there are no Type I1 currents since C, is now a saddle. 
Their place is taken by Type IV flows that occur also for p < 2,& < 2. The change of 
nature of C, as one passes from a > 1 to a < 1 explains this fact. 

Various solutions for a = +, obtained by numeric integration, are shown in figures 
7 and 8, in which we represent the dimensionless depth profile H(LJ = 82[zZ(LJ = 
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FIGURE 7. Currents for a = (,LL = $), 1 < 4 < 2 and p variable: (a) dirncnsionless velocity profiles 
U ( 0 ,  (b) dimensionless depth profiles H ( 8 .  The solutions correspond to % = 1.85, 13," = 1.49, 
p, = 1.62, pC = 1.74, pd = 2, p, = 2.05, pf = 2.39. The solution labelled a has a hydraulic jump at 
x = 0. 
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FIGURE 8. Currents for a = a (p = $), 3 > 2 and p variable: (a) dimensionless velocity profiles V(g,  
(b) dimensionless depth profiles H([). The solutions correspond to Yo = 2.26, pa = 1.32, p, = 1.43, 
pc = 1.62, p, = 1.80, = 1.98, p, = 2.10, p, = 2.27, p, = 2.27, /I, = 2.41. The solution labelled a has 
a hydraulic jump at n = 0. 

h/b2t28p2 and the dimensionless velocity profile U([) = 8<V(<) = u/bt'-l. Figure 7(a, b) 
represents currents produced by a moderately supercritical source (6 = 1.85) and 
different p, which corresponds to a cut of the diagram of figure 6(b)  along an 
horizontal line, As f i  increases one finds a choked current (Type I), then Type I11 
currents for /3 < 2, and finally Type IV flows. Figure 8(a,  b) represents currents 
produced by a strongly supercritical source (8 = 2.26) and different fi. As f i  increases 
(see figure 3) one finds first a choked current (Type I), then Type 111 currents, but no 
Type IV flows appear. In both cases it can be observed that the length of the current 
increases as ,8 is increased (i.e. the ambient fluid resistance is diminished), according to 
intuition. Notice, however, that now (contrary to the a > 1 case) the thickness at the 
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front is nearly independent of 8. In the supercritical part, as before, the thickness of the 
current varies very little with 5; but in the subcritical part it increases rapidly with 6. 
Most of the fluid tends to accumulate near the front: this is because the parts of the 
current farther from the source are made up from the fluid that issued earlier, when the 
source flow was larger (a  < 1). It can also be observed that the velocity increases very 
rapidly with 5 in the subcritical part near the front, contrary to what happens for 
a > 1. The length of this part diminishes with ,h'. 

5. Special analytical solutions 
5.1. The spreading of a constant volume o f j u i d  (a = 0,p = $) 

The currents corresponding to a = 0 , p  < 2, were previously known (see GR). In 
addition there are solutions for 

When a = 0 the integral curve of interest is V = 1, on which lie three singular points 
(see table 1): E(V, = 1,Z, = GO), B(VB = 1,Z, = i) and C,(V,, = ::Zcl = 0). The 
singularity that represents 6 = 0 (that is not a source now) is E. The point B represents 
= GO, and C, represents a moving point of the current where the depth vanishes. and 

where g = to = const. From (24) and V =  1 one obtains 

3 2 as we shall presently show. 

f = ICIZ-~I-;, K = const. ( 3 5 )  

v =  1, z = $+(K/t) ' ,  (2 > +), (36) 

In consequence the solutions represented by pieces of V = 1 above B are of the form 

and those represented by pieces below B are given by 

V =  1, 2 = i - (K/()Z (Z  < $). ( 3  7) 
Then the following cases can occur: 
(a) When p < 2, P is above B and the solution is represented by the segment E P ;  

setting 
K = +&(4/P2- l)t, (38) 

one obtains u = 2x/3t ,  h = ( ~ / 3 t ) ~  [ 1 + (4/b2 - l)(Ef/9z], (39) 

with 

These are the solutions of Fannelop & Waldman (1972) and Hoult (1972), which GR 
rederived with the phase-plane formalism. The depth of the current at x = 0 is 

h(x = 0)  = (btf/3)2 (4/PZ- 1) t - f ;  

h(x = x f )  = ( ! ~ [ ~ / 3 ) ~  (4/p2) t-i. 

(41) 

(42) 
As p increases and approaches 2 the length of the current increases and h(x = 0) 

diminishes. 
(6)  For /3 = 2 the current is described by the special isolated solution corresponding 

to the singular point B. One has V = 1, Z = $, and from (32) one finds Q = 3.  The 
solution is 

h(x = 0)  is less than the depth at the front, given by 

u = 2 ~ / 3 t ,  h = ( ~ / 3 t ) ' ,  x < x f .  (43) 

Notice that this current has vanishing depth at x = 0. 
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FIGURE 9. Dimensionless depth profiles H([ )  of the currents produced by the spreading of a 

constant volume of fluid (a = 0). The curves are labelled according to the value of 8. 

(c)  When p > 2, P lies below B. In consequence the solution cannot be extended to 
5 = 0 (i.e. to E) .  Yet we can find a solution by considering the piece C, P of the line 
V =  1. Then, using (37) and setting 

we find 
K = itOIo1 t o  = t f (1  -4/pz)'3 (44) 

= 2x/3t ,  = ( x /3 t ) ' [1 - (&/ ( )2]~  < 5 < tf (45) 

with 27/32 
"= (1?-2,!?2[1-(I-4//32)1] 

The depth of the current is zero in the interval 0 < 6 < to. 
Depth profiles of the currents for ct = 0 are shown on figure 9 for several values of 

p. It can be observed that as /I increases the fluid tends to accumulate near the front 
and at the same time the length of the current increases, according to intuition. For 
/l> 2 the dry region near the origin can be clearly observed. 

To conclude this discussion it remains to mention that there is no self-similar 
solution of this kind in the limit p-. 00 (spreading in a vacuum). The spreading of a 
constant volume of a liquid in a vacuum can be studied by the method of 
characteristics, and has no self-similar asymptotics (Gratton 1988); the result is 
completely analogous to the free expansion of a finite mass of a gas (see for example 
Stanyukovich 1960). 

5.2. Currents produced by a constant source (a = 1 7 p  = 1) 
The solution of the equivalent problem in gas dynamics is described in detail in 
Gratton (1991). If we set ,u = 1 in (23), a common factor A in the numerator and 
denominator cancels, and we obtain dZ/d V = 2 2 /  V which upon integration yields 

2 = (V/%)? 

Then integrating (24) and using (34) one finds 
(47) 

5 = ..I:/ V. (48) 
The integral curves are then a family of parabolas whose vertex is at the origin of the 
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phase plane. It is easy to see that (47), (48) represent uniform flows with constant 
velocity u = u, = Fi and constant depth h = h, = 9;;. Notice that for 14 = 1 one has 
A ,  = - Vd, A ,  = -224  so that [(V), [ (Z )  are not extreme on the 4. Then it is allowed 
to cross the ,% following the curves (47). 

In addition it can be verified that for = 1 the 96 is a special integral curve, along 
which one has 

Z = ( V -  1)2, 6 = 4 P'-$lpl, K = const. (49) 

Equation (49) represents a critical transition (9 = 1) between regions of different 
depth and velocity; it is analogous to an expansion or compression wave in a gas. 
Notice that in (49) 6 increases as one moves on the from F to B (V, = g, 2, = f )  
where 5 = m. 

Then in the case n = 0, a = 1, the self-similar solutions will comprise the uniform 
flows already discussed by GR, plus a variety of other not so trivial currents consisting 
of regions of uniform flow connected by hydraulic jumps and critical transitions. To 
find the currents we want it will suffice to impose the boundary conditions (30), (31) 
and when necessary, the jump conditions (28) following the prescriptions of 33. 

5.2.1. Uniform currents 

Using (30), (31), (47), (48) one finds 6 = p, cf = @, so that the solution is given by 

u = uo = (q1p2)i, h = 12, = (q#)i, X f ( t )  = uo t. 

Notice that there are continuous solutions for any p, including currents supercritical 
near the source (it is allowed to cross the .%). Equations (50) are Type 1 currents, like 
those discussed in $4. Now they also exist for > 1, but then they have a critical 
transition, which means that the source is outside the region of influence of the front. 

5.2.2. Solutions with critical transitions 

Consider a uniform current near the source represented by a curve VF of the form 
(47) corresponding to 6 > 1 ; this curve will cross the 9& at a point T. Clearly it is 
possible to find a family of solutions formed by: (i) the piece FT of VF, (ii) a piece TT' 
of the 4 (where T' lies between T and B, since 6 must increase), and (iii) a piece T P  
of a uniform current corresponding to 9; > .%. Then if TP represents a uniform 
current for a given p, it is possible to find an infinite number of solutions with critical 
transitions that have the piece FT in common with the uniform current, but that near 
the front have a different behaviour, corresponding to another uniform current with 
p' > p .  The matching between both uniform parts occurs by a critical transition, 
represented by a piece of the 4. A particular case of this kind corresponds to p = m, 
and consists of the part of the .% that joins F with the point (1,O); it is the solution of 
the classical problem of the breaking of a dam (for details see, for example, Whitham 
1974). These currents are the analogues of the Type I1 currents discussed in 34. 

5.2.3. Discontinuous solu f ionJ 
Starting from a uniform current in the source region, represented by a curve qF 

corresponding to > 1, it is also possible to find a family of discontinuous solutions 
represented by : (i) a piece FJ of gF that goes from F to a point J ( J  must lie below the 
4) where there is a hydraulic jump, and (ii) the piece J 'P  (with J' = F(J)) of another 
uniform current corresponding to Fh < %. Then if TP represents a uniform current 
for a given p, there is an infinite number of discontinuous solutions that have part of 
the piece FT in common with it, but that near thc front have a different behaviour, 
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FIGURE 10. Currents produced by a source with constant inflow (a = 1):  intervals of parameters 

in which the different type of currents appear. 
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FIGURE 11. Currcnts produced by a source with constant inflow (z = 1): (a) dimensionless velocity 
profiles U(Q, (b) dimensionless depth profiles If([). The solutions correspond to 9" = i, pa = 0.69, 
p, = 0.84, p, = 1.03, p, = 1.24, = 1.5, p, = 2.67, p, = 5 ,  /3, = 12, pi = a. The solution labelled a 
has a hydraulic jump at x = 0. 

corresponding to uniform currents with any other p' < p. The uniform parts are 
connected by a hydraulic jump. For /3 > 1 there are solutions of this kind for any 
& > /3. For /3 < 1, there are solutions with jumps for & > enf = /3[2/4v)]i. 

corresponding to the different 
types of solutions. In figure 11 the profiles of U and H of some solutions for 6 = 1.85 
and different /3 are displayed. They correspond to a cut of the diagram of figure 10 
along a horizontal line. As /3 increases one find a choked current (Type I), then Type 
111, and finally Type I1 flows. As always, the length of the current increases as /3 is 
increased. The thickness at the front decreases with /3. The velocity increases very 
rapidly with < in the critical transition region, whose length increases rapidly with /3. 
It is interesting to compare the profiles of figure 11 with those corresponding to 
currents with a > 1 (figures 4, 5 )  and a < 1 (figure 7, 8) and notice the similarities and 

In figure 10 we represent the intervals of p and 



Self-similar grauity currents with variable inflow 99 
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FIGURE 12. Solutions associated with the integral curve %: (a)  dimensionless velocity profiles U ( 8 ,  (b) 
dimensionless depth profiles H(Q. The labels C, K denote the special analytical solution with 
4 = 2, and the solution corresponding to 8 = Fz(,u) and are represented for p = +. 

the differences: the thickness profiles for a > 1 are quite similar to those for a = 1, 
while those for a < 1 are strikingly different; on the other hand, the velocity profiles 
for CL > 1 are very different to those for a = 1, while those for CL < 1 are more similar. 

5.3. Solutions associated to the integral curve %?(Z = +Vz)  

The solutions represented by pieces of this curve are of interest as limiting cases of the 
currents discussed in $4, when one considers the transitions between Type I1 and Type 
111, or between Type IV and Type 111 flows (see figures 3 b and 6b).  

For any a, the curve V(Z = 2V') represents a special solution (that we call solution 
C) of the autonomous equation (23). The piece FP (V, = 1, Z,  = i) of %? represents a 
continuous solution for /3 = 2, for which 

Using (5 1) one finds the bchaviour of the physical variables : 

(52) 
As a function of y , f ( V ( ~ ) )  is monotonically decreasing if 0 < p < 1, constant if 

p = 1 and monotonically increasing if 1 < p < :. It is interesting to evaluate f(V) 
at the source and at the front. At the front,f(l) = 1, and h, u are finite. At the source, 
f ( m )  = f ,  = (1 - 2p/3)'-'. Then, if 0 < ,D < 1, J, > 1 (in particular, f,& = 0) = ei), 
if ,u = 1, f, = 1, and if 1 < p < t one has 1 > f ,  > 0. For ,u = 1 this solution coincides 
with a special case of the uniform flows we discussed above. For ,u = it coincides with 
the solution represented by the singular point B. 

This current corresponds to a supercritical source (8 = 2 ) ;  the transition to the 
subcritical front region occurs without discontinuity. 

There is another special solution related to %. It consists of a piece FC3 of the integral 
curve X(,u) and a piece C, P of %?. This current is everywhere subcritical except at the 
point C, where it just becomes critical. This solution, which we call K, corresponds to 

In figure 12 we represent the depth and velocity profiles of the solutions C, K for 
(,u = :). The kink in the profiles of K corresponds to the critical point. These 

h - t 2 Z  - if( V)Z, u - [V  - f(  V ) .  

% = F J j h ) .  
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profiles should be compared with those of the solutions for ,8 = 2 in figures 7, 8 (for 
example, C with that labelled r in figure 8, and K with din figure 7) that have the same 
subcritical part, but are discontinuous and differ in the source part. If one considers a 
solution like e, figure 8, and takes the limit % 2, the position of the jump in the phase 
plane moves closer to the point C, and the magnitude of the discontinuities diminishes, 
finally disappearing in the limit, when the solution is precisely C .  Likewise, if 6 + 9; 
for a solution like d, figure 7, the position of the jump moves closer to the source, which 
finally is choked when & = 9; ; then the solution is precisely K .  

6. Final remarks and conclusions 
Some general comments should be made about the physical interpretation of self- 

similar solutions, especially when derivcd from a mathematical formalism like the 
phase-plane technique (as we do here) and not by starting from a certain initial-value 
problem and following its evolution (either experimentally, or by numerical simulation) 
to find its intermediate asymptotic behaviour. It must be kept in mind that self- 
similarities are exact solutions of ‘degenerate ’ problems (Barenblatt 1979) ; they are of 
interest because they reveal the intermediate asympto tics of real non-degenerate 
problems, when the system has evolvcd into a regime in which some constant 
governing parameter has ceased to be relevant. In deriving the similarity solutions by 
direct construction we lose sight of how to set up an actual experiment to produce such 
currents. In other words, we get a solution, but it may not be obvious to which initial- 
value problem it belongs. Often the self-similar solution alone only provides few, if any, 
clues to this effect. In such a case it is bctter to be cautious, since until we find some 
reasonable and physically feasible experiment, or initial-value problem, whose 
intermediate asymptotics is represented by our self-similar solution, we cannot be fully 
confident that the latter is physically meaningful. Based on the vast amount of 
literature on self-similarity (see, for example, Sedov 1959; Stanyukovich 1960; 
Zel’dovich & Raizer 1968; Gratton 1991, and the references given therein) and the 
experience of the authors, the self-similarities found by the phase-plane fomalism turn 
out to be physically meaningful (we do not know exceptions), although sometimes they 
correspond to quite bizarre initial value-problems (see for example Gratton & Minotti 
1990). However, in strict honesty, to give a fully rigorous answer to this question in the 
present case requires a large amount of additional work, which is clearly beyond the 
scope of this paper. If one does not pretend to adhere to strict mathematical rigour, we 
can argue why we believe our solutions are physically realistic. 

The self-similar solutions corresponding to a source with increasing inflow (a > 1)  
are regular in the limit l+ 0. There is no difficulty in conceiving a real (non-degenerate) 
problem in which the volume of the current varies according to the law ( 5 )  right from 
the start. Consider, for example a source such as we described in $2.1, i.e. a liquid 
reservoir that drains through a slit opening at the bottom of one of its sides. It is 
certainly possible (in principle, at least) to begin the experiment with the slit closed, 
and, starting at t = 0, to gradually increase the width of the slit and simultaneously 
vary the depth of the liquid in the reservoir, in such a way that the source conditions 
(6) and (7) are satisfied right from the start. In this idealized experiment, we expect that 
our self-similar solutions will describe correctly the current, as soon as the conditions 
of validity of shallow-water theory are satisfied. Or one can imagine a transient time 
interval, 0 < t < to, during which u and 4 may vary in some arbitrary way, until at 
f = to the experimenter adjusts his gadgets and from there on the conditions (6) and (7) 
are fulfilled. In this case we expect that for large times, t % t, (more precisely, well after 
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the C+ characteristic, satisfying (dx/dt),+ = u + hi emanating from the source at t = to 
has overtaken the front of the current) the effect of the initial transient will be negligible 
and the flow will attain the same self-similar asymptotics as before. We then see that 
a range of reasonable initial-value problems can be set up, whose intermediate 
asymptotics is described by these solutions. On physical grounds, we expect that in 
these cases there will be different types of currents, depending only on the character 
(discontinuous or not) of the matching between the source-determined and the front- 
determined parts of the current. The matching depends on the extent of the region of 
influence of the front, which for f i  (or %) sufficiently small encompasses the whole 
current and chokes the source leading to Type I currents. When the source is not 
choked, p and 3 can be chosen independently (Types I1 and 111). This is precisely what 
one finds, Similar comments can be made for the cases of sources with constant outflow 
(a  = 1) and of the spreading of a constant volume (a  = 0). 

The currents produced by a source with decreasing inflow (a < 1) are a different 
matter, because in a real case we cannot assume that the current follows (6) and (7) 
right from the start. In fact, according to (6), (7) ,  u(x = 0 )  and d(x = 0)  diverge in the 
limit t + O ,  and the self-similar solutions are singular. However, it is still possible to 
devise an adequate non-degenerate initial-value problem whose intermediate asy- 
mptotics is described by our solutions. but one must imagine that before the source 
begins to behave according to ( 5 )  there is already a current flowing (i.e. the source has 
been turned on previously). This pre-existing current will have a volume $, certain 
velocity and depth profiles (which depend on the previous history), and of course will 
not be self-similar. Then at, say, t = to we begin turning off the source so that (6) and 
(7) are satisfied for t > to. Our expectation is that the self-similar currents we have 
found will describe the intermediate asymptotics of this problem, for t 9 to (i.e. well 
after the C+ charateristic emanating from the source at t = to has overtaken the front 
of the current, and when 2(t) 9 $, and the details of the profiles at t = to have ceased 
to be relevant). This is why we believe that our self-similar solutions are physically 
meaningful. However, the fact that there must be a pre-existing current before we turn 
on the source conditions has some consequences: it is conceivable that the matching 
between the source-determined and the front-determined parts of the current may now 
be more complicated than the a > 1 case. As said above, the self-similar solution itself 
only offers faint clues pointing to its parent non-degenerate initial-value problem : 
without additional knowledge we can only guess some of its traits. Scrutinizing closely 
the solutions for a < 1 one finds, in fact, that in the transition to the intermediate 
asymptotic regime most of the details of the pre-existing flow lose relevance (as 
expected), but some mark of its existence remains and shows up in the self-similar 
solution. Consider, for example, the intermediate region of Type IV currents, where the 
critical transition takes place. Mathematically, this region is needed as a bridge linking 
the source and front parts of the current (that cannot be directly matched as in Type 
I1 and I11 currents), but the physical explanation of its cause is not obvious. The 
intermediate region is indeed a very peculiar feature: it is represented by the unique 
integral curve X ,  so that its flow pattern does not depend on 6, nor on p (which only 
determine the position of the jumps on .X). In other words, the intermediate flow does 
not depend on the boundary conditions (excepting a). Then it is reasonable to infer 
that it is a feature left over by the pre-existing flow. To test this conjecture we studied 
with the method of characteristics an initial-value problem consisting of a current with 
a critical transition such as those that occur for a = 1 (see $5.2.2), which we guess may 
lead to a Type IV current if we turn off the source as described above (this is suggested 
by the comparison of the profiles of figures 7 and 11). We find that for appropriate 
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values of 6 a jump develops between the source and the intermediate region where the 
critical transition occurs, thus supporting the conjecture, but unfortunately we could 
not go further since the analysis becomes too involved. We omit details for brevity. 

In conclusion, we have studied systematically self-similar gravity currents with 
variable inflow for plane symmetry. We find that to remove ambiguities (the ‘not 
unique’ solutions of GR) it is important to characterize adcquately the source by giving 
its Froude number %. To obtain the complete family of self-similarities it is also 
essential to consider solutions with hydraulic jumps. Then one finds solutions for any 
(compatible) combination of source and front boundary conditions. The different 
solutions and the parameter ranges in which they occur are summarized in table 2; 
italics denote the solutions not described by GR, see also figures 3(b) ,  6(b) and 10. 

The main results of the present work are the following: 
(a) There are four types of self-similar currents: continuous solutions (Type I), 

continuous solutions with a supercritical-subcritical transition (Type 11), discontinuous 
solutions (Type IIT), and discontinuous solutions having hydraulic jumps and a 
subcritical-supercritical transition (Type IV). The current is always subcritical near the 
front, but near the source it is subcritical for Type I currents and supercritical for Types 
11, I11 and IV (and for Type I when a = 1, p > 1). Type I solutions were previously 
known (GR), but Type 11, I11 and IV solutions are novcl. 

(b) Type I currents exist only in some /?-intervals (except for a = 1, when any p is 
possible), and for them % = %(p), as found by GR. That 3 and p cannot be chosen 
independently for these solutions is a consequence of the source and front regions being 
causally related. There is a close mathematical relationship between Type 1 and I11 
currents: starting from a Type I11 current and taking the limit in which the hydraulic 
jump moves closer to the source until it finally chokes it, one obtains a Type I current. 

(c) Type I1 currents exist for a > 1, /3 > 2, and 1 < % < 2. Their characteristic is 
that the transition between the supercritical flow in the source region and the 
subcritical flow near the front occurs without discontinuity, Since the source region is 
outside the domain of influence of the front, p does not dcterrnine 3, and it is possible 
to specify arbitrarily (but within a certain range) this property of the source. 

(d) Type I11 currents are possible for any a,p provided 8 is sufficiently large 
(3 > 9& where enf is a certain lower bound, always 3 l), and provided we are not in 
the (a,/?,Fo) range corresponding to Types I1 and IV. Unlike Type 11, Type I11 
solutions have a discontinuous supercritical-subcritical transition. As for Type 11, in 
Type I11 currents the source region is outside the domain of influence of the front, and 
this is why /? does not determine %. 

(e) Type IV currents occur for a < 1, p > 2, 1 < Fo < 2. There is a three-step 
transition from the supercritical source flow to the subcritical front flow: first, a 
hydraulic jump connects the source part of the current with the intermediate subcritical 
flow ; second, this flow has a continuous transition into an intermediate supercritical 
region; finally, there is a second hydraulic jump connecting the intermediate region and 
the front region. As for Type I1 and I11 currents, the source region is outside the 
domain of influence of the front, and /3 does not determine 6. 

(J’) The spreading of a constant volume of fluid (a = 0) leads to Type I solutions 
only, since there is no source in this case. There are solutions for any finite p, because 
in addition to the currents with p < 2 already known from the literature (Fannelop & 
Waldman 1972; Hoult 1972; GR), we find solutions for p 3 2. These new solutions 
have the pccularity that there is a ‘dry’ region near the origin of spreading (x = 0). 

(g )  For steady inflow (a = l), in addition to the uniform currents of GR, we find for 
any p solutions of Types I1 and 111, provided 8 > 1. 
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CL 8 P 
o < p < 2  2 < p < m  p = m  

0 - Type 1 Type I, dry origin none 

O < a < l  %(J) Type I 
%f(P> Type 1 

~ ~ 

- - 

%fco) < % Type III - - 

FX. < 4 < 2 Type IV none 
2 < c% _ -  Type III  none 

~ 

o < p < 1  1 < p < m  
- - 

- - 
1 P Type 1 

$n@) Type I 

% < P  
% ' P  

9&@) < 3 Type III - - 
- Type II Type II 

O < P < P ,  B , < P < 2  2 < p < c o  

- Type III Type III 

l<CL<4 %(J) Type I 
%cc) Type 1 

1 < q < 2  - Type III Type II Type II 

~ ~ - 

~ ~ ~ 

%,W < 6 Type I I I  ~ ~ 

2 < c% Type III Type III Type III ~ 

TABLE 2. Summary of the solutions and their parameter ranges; italics denote 
solutions not found by GR 

Summarizing, for any ,4' there is a family of self-similar solutions that represents 
currents produced by sources with different combinations of CI and &. Only when the 
current is everywhere subcritical (Type I, 6 < l), must /3 and 6 be compatible (so 
that c% = &,cB)). In the other cases (Types 11, 111, IV) it is possible to choose /3 and 
6 (% > enf, 1) independently. 

Thanks are due to Fernando Minotti and Alejandro G. Gonzzilez for helpful 
discussions. We are glad to thank the three anonymous referees, whose comments and 
criticisms have helped to improve the manuscript. This work is part of the MSc thesis 
of C.V. 
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